Warning: Undefined array key 0 in /var/www/biosothis.com/model/Curation/class.php on line 184

Warning: Trying to access array offset on value of type null in /var/www/biosothis.com/model/Curation/class.php on line 213

Warning: Trying to access array offset on value of type null in /var/www/biosothis.com/model/Curation/class.php on line 213

Warning: Undefined array key -1 in /var/www/biosothis.com/model/Curation/class.php on line 194

Warning: Trying to access array offset on value of type null in /var/www/biosothis.com/model/Curation/class.php on line 213

Warning: Trying to access array offset on value of type null in /var/www/biosothis.com/model/Curation/class.php on line 213
BioSothis

BioSothis

For scientists, by scientists

Social Exclusion Amplifies Behavioral Responses to Physical Pain via Insular Neuromodulation

2025-05-13, bioRxiv (10.1101/2025.05.09.653162) (online) (PDF)
, and (?)
The Pain Overlap Theory proposes that the experience of social pain overlaps with and amplifies the experience of physical pain by sharing parts of the same underlying process- ing systems. In humans, the insular cortex has been implicated in this overlap of physical and social pain, but a mechanistic link has not been made. To determine whether social pain can subsequently impact responses to nociceptive stimuli via convergent electrical signals (spikes) or convergent chemical signals (neuromodulators), we designed a novel Social Exclusion paradigm termed the Fear of Missing Out (FOMO) Task which facilitates a mechanistic investigation in mice. We found that socially-excluded mice display more severe responses to physical pain, disrupted valence encoding, and impaired neural representations of nociceptive stimuli. We performed a systematic biosensor panel and found that endocannabinoid and oxytocin signaling in the insular cortex have opposing responses during trials where mice were attending or not attending to the Social Exclusion events respectively, demonstrating distinct neuromodulatory substrates that underpin different states of Social Exclusion. We also found that intra-insular blockade of oxytocin signaling increased the response to physical pain following Social Exclusion. Together these findings suggest Social Exclusion effectively alters physical pain perception using neuromodulatory signaling in the insular cortex.
This article has not yet been included in any curations.
 
 
0
   

Comments

There are no comments on this article yet.


You need to login or register to comment.
FAQ | Privacy Policy | Contact
Page generation time: 0.018